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Tunnel crisis and the crisis-induced intermittency
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In this paper a different type of crisis in random map is studied. The trigger of this crisis is the tunnel effect
induced by a backward tangent bifurcation, while the previously reported crises are all caused by the collision
of the chaotic attractor with an unstable orbit. In studying the intermittency behaviors induced by the crisis, two
different characteristic times are defined. The scaling laws of the characteristic times are calculated numeri-
cally. Comparing the present crisis with the previously reported cases, the difference between their mecha-
nisms is shown. Corresponding to this difference, two groups of crises are classified.
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I. INTRODUCTION

A central problem in nonlinear dynamics is that of disco
ering how the qualitative dynamical properties of orb
change and evolve as a dynamical system is continuo
changed. The period-doubling bifurcation cascade, interm
tency, crisis, and basin boundary metamorphoses are s
examples of this type of transition in the dynamical behav
with the variation of a parameter@1#. One of them, crisis, has
played a prominent role in the understanding of chaos
names the discontinuous change of the chaotic attracto
phase space and is caused by the collision of the cha
attractor with an unstable attractor or, equivalently, its sta
manifold. During the past couple of decades, much work
been done on this subject@2–8#. Corresponding to the dis
continuous change in the chaotic attractor induced by cri
Grebogi and co-workers named the crisis the boundary cr
interior crisis, and merging crisis, respectively@3#. For a
properly defined characteristic timet, the mean characteris
tic time exhibits perfect power-law relation as^t&;eg with
the variation of the control parametere. A theoretical ap-
proach to obtain the critical exponentg of the crisis in two-
dimensional dissipative systems was developed by Gre
et al. @3#. Also, rich behaviors in high-dimensional system
have been studied by different authors@6–8#.

Recently, a different mechanism of crisis in a rando
map has been reported@9#. In this case the crisis is triggere
by a backward tangent bifurcation that is induced by
random variation of a parameter. Due to the tangent bifur
tion, a narrow tunnel appears randomly between the grap
the map and the 45° line. Then the phase points are ab
escape via this tunnel from the original region where th
stayed. This mechanism is different from that of the forme
reported cases of crises that are caused by the collision o
chaotic attractor with an unstable orbit.
551063-651X/97/55~6!/6598~6!/$10.00
-

ly
it-
me
r

It
in
tic
le
s

s,
is,

gi

e
a-
of
to
y
y
he

In this paper, some simple models that can exhibit t
crisis are given. Also the intermittency behaviors induced
the new crisis are studied. This paper is organized as follo
In Sec. II, some simple models that can exhibit the pres
crisis are given. In Sec. III, two characteristic timest1 and
t2 are defined. The scaling laws of the characteristic tim
with respect to the variation of the parameter are also stud
here. Section IV is a short summary and discussion.
show the difference between the present crisis and the
viously reported crises. Corresponding to the difference
their mechanisms, two groups, named ‘‘tunnel crisis’’ a
‘‘collision crisis,’’ are classified. The reasons why the cha
acteristic times of the intermittency behavior are very lo
are given.

II. MODELS

In this section, three simple examples that can exhibit
present crisis will be studied. Two of them are random
driven maps. The third one is a chaotically driven ordina
differential equation~ODE!. One of our motivations to study
such a randomly~or chaotically! driven system is to under
stand the mechanism of the synchronization of chaotic s
tems@10#. For the chaotic synchronization, there is always
ensemble of identical nonlinear systems driven by a cha
signal. So the study of a single random driven system
important to the understanding of the mechanism of cha
synchronization. This work is also motivated by the attem
to study the domain loss of a multiperiodic system under
influence of random driving@11–14#. Some authors even
have noted that the domain loss under the influence of n
results from a crisislike behavior.

The first model we study is just a randomly shifted m
with the form

yn115 f „f ~yn!…1zn~mod1!, ~2.1!
6598 © 1997 The American Physical Society
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where

f ~y!5ay~12y!, ~2.2!

zn5bxn , ~2.3!

andxn (n51,2,3,. . . ) are aseries of random numbers ho
mogeneously distributed in the interval@0,1#, anda, b are
two positive real constants.

For a53.2, b50, the system has two coexisting fixe
pointsy0,1

s 50.513 andy0,2
s 50.8. Hereyb,i is the i th root of

the equationf „f (y)…1b5y when all its nonzero roots ar
arranged in ascending order. Other symbols ofy with sub-
scripts of similar meaning are used in this paper. The sta
ity of the state is indexed by the superscriptss andu, respec-
tively. For identical systems starting from different initi
points, they finally evolve to one of the two states. The ba
boundary of the two states is the unstable fixed po
y0
u50.688 of f „f (y)…5y.
If we fix the value ofa and increase the noise streng

b slowly, the graph of the map at different steps is blurr
into a band bounded by

yn115 f „f ~yn!… ~2.4!

and

yn115 f „f ~yn!…1b~mod1!. ~2.5!

The two fixed pointsyb,1
s ,yb,2

s are blurred into two bands
correspondingly. For simplicity, below we will denote th
two bands evolved fromyb,1

s and yb,2
s as the lower and the

upper band, respectively. At this time, an ensemble of id
tical systems starting from different initial points st
evolves to two distinct groups, although the orbit of a sin
system is already of weak random character. But it should
noted that an uncertain region appears between the basi
the two states. The boundary pointsyb

u andy0
u of the uncer-

tain region are the unstable fixed points
yn115 f „f (yn)…1b(mod1) andyn115 f „f (yn)…. For an orbit
starting from the phase point in this region, it is much mo
difficult to determine which state it finally evolves to. In Se
IV it will be discussed in detail that the uncertain regio
plays an essential role in the present crisis. With the furt
increase ofb, the fixed pointyb,1

s and the unstable fixed poin
yb
u approach each other. They eventually annihilate due
backward tangential bifurcation asb reaches a critical value
bc ~see Fig. 1!. After that a narrow tunnel occasionally ap
pears between the graph of the map and the 45° line. T
the orbits that are originally bounded in the lower band
able to escape to a larger region via this tunnel. The
bands change their sizes suddenly and merge into a s
band. This sudden change of band size is another typ
crisis named tunnel crisis@9#. The two typical orbits for the
subcritical and the supercritical case are shown in Fig. 2

The second model is a randomly shifted piecewise lin
map

yn115 f ~yn!1zn~mod1!, ~2.6!

where
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f ~y!55
5y/3 if 0<y,1/5

1/3 if 1/5<y,2/5

5y/321/3 if 2/5<y,3/5

2/3 if 3/5<y,4/5

5y/322/3 if 4/5<y,1,

~2.7!

zn5bxn , ~2.8!

xn is a series of random numbers homogeneously distribu
in the interval@0,1#, andb is a positive real constant. Th
motivation to study such a system is to compare it with
first model. The two models belong to two different metr
universities. We want to know whether the critical expone
for the scaling law of the characteristic time is influenced
the form of the map.

The system has two fixed pointsy1
s51/3 and y2

s52/3
without the influence of the noise. The two fixed points a
blurred into two bands with the slow increase of the no
strengthb. The lower band loses its stability whenb is be-
yond a critical value bc5x*2y* . Here y*51/3 and

FIG. 1. ~a! Orbits for the randomly shifted map~2.1! with
b50.02,bc . The two orbits are bounded respectively in two sep
rated bands.~b! Orbit for the map~2.1! with b50.043.bc starting
from the lower band. The orbit bounced back and forth random
and transmitted finally to the higher band through the tunnel app
ing between the graph of the map and the 45° line.
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6600 55H. L. YANG, Z. Q. HUANG, AND E. J. DING
x*52/5 are just the coordinates of the tangent point~see Fig.
3!. Via the randomly appeared narrow tunnel between
graph of the map and the 45° line, orbits originally bound
in the lower band finally escape. Figures 4~a! and 4~b! show
the two typical orbits forb of the values below and above th
critical valuebc , respectively.

The third model is a system of ODEs

dx1
dt

53x12x1
31bsin~x2/2!, ~2.9!

dx2
dt

5x3 , ~2.10!

dx3
dt

520.22x32sinx212.7sint. ~2.11!

If one divides the system into two subsystemx1 and
(x2 ,x3), the subsystem (x2 ,x3) evolves chaotically for the
given parameters. Since the subsystem (x2 ,x3) has no de-
pendence on the variablex1, the whole system can be viewe
as a chaotically driven one-dimensional ODE. The s
system (x2 ,x3) is just the signal source to product a chao
noise. Forb50, i.e., without the influence of the chaot
noise, the subsystemx1 is bistable. It has two stable state
x1
s56A3. With the increase of the noise magnitudeb, the
two fixed points are blurred into two bands distributed sy
metrically at the two sides of the pointx150. The two bands
change their size suddenly and merge into a single ban
b passes through a critical valuebc52.0. As a result, the
orbit that is originally bounded in the region of positive~or

FIG. 2. yn versusn of model ~2.1! for the different values of
b: ~a! b50.02; ~b! b50.043.
e
d

-

-
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negative! x1 can now switch between two sides of the po
x150 freely. Typical orbits are shown in Fig. 5.

If a Gaussian noise is used to take the place of the so
term sin(x2/2) in Eq. ~2.9!, the subsystemx1 is just the usu-
ally used model to study the stochastic switch in the bista
system@15,16#. In this case, the maximum value of the noi
is infinite. So the switch can happen even for a very we
noise strength. One would like to think that the mechani
of the stochastic switch is also due to the crisis reported h

III. CRISIS-INDUCED INTERMITTENCY AND THE
SCALING LAW OF THE CHARACTERISTIC TIME

For a boundary crisis, the system exhibits a long period
chaotic transience before its escape. For an interior crisis
a merging crisis, an episodic switching between two~or
more! chaotic behaviors of different characters appears w
control parameters pass through their critical values. Greb
et al. named these behaviors crisis-induced intermitten
For a properly defined characteristic time, all these ca
have good scaling properties. In studying the crisis-indu

FIG. 3. ~a! Orbits for the randomly shifted piecewise linear ma
~2.6! with B50.8,Bc . The two orbits are bounded respectively
the two separated bands.~b! Orbit for the map ~2.6! with
B51.15.Bc starting from the lower band. The orbit bounces ba
and forth and transmits finally to the higher band through the tun
appearing between the graph of the map and the 45° line. H
B515b andBc515bc51.0.
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55 6601TUNNEL CRISIS AND THE CRISIS-INDUCED . . .
intermittency, one of the most important problems is to fi
the critical exponentg in the scaling law. Below we will use
the first two models to illustrate the numerical results ab
the crisis-induced intermittency and the scaling law for
characteristic times.

It has been pointed out in Sec. II that an uncertain reg
will appear between the attracting basins of the two coex
ing states under the influence of the stochastic term. For
noise strengthb beyond a certain critical valuebc , a narrow
tunnel appears occasionally between the graph of the
and the 45° line. Letb be slightly greater thanbc and con-
sider an initial condition placed in the phase-space reg
occupied by the basin of a certain attractor that existed
b,bc ~the lower band in the two models studied here!. The
orbit starting from this initial condition typically moves to
ward the region of theb,bc attractor, moves in a manne
reminiscent of an orbit on theb,bc attractor, and eventually
escapes from this region through the narrow tunnel.
b.bc , one of the coexisting attractors is replaced by a c
otic transient. Since there is an uncertain region between
two original attractors, orbits escaping from the phase-sp
region occupied by the basin of the attractor that existed
b,bc first enter the uncertain region and remain there fo
long time. As a result, two different characteristic times ne
to be defined. One characteristic is the time an orbit wand
in the phase-space region occupied by the attracting bas
the attractor that existed forb,bc . The second is the time
the orbit spends in the uncertain region before it enters o
distant attractors. The two times are denoted ast1 and t2 ,
respectively, throughout this paper.

An ensemble of orbits starting from the phase points s
tered homogeneously in the original attractor, they esc

FIG. 4. yn versusn of model ~2.6! for the different values of
B: ~a! B50.08,Bc and ~b! B51.15.Bc .
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from this attractor one by one through the randomly appe
ing tunnel. If one records the lifetime of each point staying
the original attractor, the probability distribution of the lon
lifetime is

P~t!;exp~2t/^t&!. ~3.1!

So one can get the mean lifetime from the lifetime distrib
tion. Another approach to get the mean lifetime is to calc
late it directly. We will use the two approaches to study t
dependence of the scaling law oft1 andt2 on the variation
of the control parameter.

For the first model, we start from the randomly select
initial points that are in the interval@0.515,0.588#. Then the
map ~2.1! is iterated until the value ofyn is greater than a
certain values. The duration of this process is the lifetim
we studied. If the value ofs is set to 0.588, the abscissa
the tangent point withb5bc50.03, the resulting time is the
characteristic timet1. If s50.688, the abscissa of the high
boundary point of the uncertain region, one getst2. The
dependence of the mean lifetimes^t1& and^t2& on the varia-
tion of control parameter are shown in Figs. 6~a! and
6~b!. The solid lines to guide eye are of slope 1.20 a
1.48, respectively. This means that lnln^t1&51.20ln(1/e)
and lnln̂t2&51.48ln(1/e), or ^t1&;exp(e21.20) and ^t2&
;exp(e21.48), wheree5b2bc . Figures 7~a! and 7~b! show
the probability distributions of the two characteristic tim
t1 and t2. The figures are constructed by an ensemble
100 000 examples of the lifetime that is less than 10 0
steps of iteration. To show the exponential decay ofP(t) for
a long lifetime,P(t) is plotted in a log-normal frame. It can
be easily seen that for larget, lnP(t) is a perfectly linear

FIG. 5. x1 versust of the chaotically driven ODE for values o
b: ~a! b51.5 and~b! b53.8.
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6602 55H. L. YANG, Z. Q. HUANG, AND E. J. DING
function of t. To fit it to a function y5k1x1k2, where
y5 lnP(t), x5n, the dependence ofk1 on e5b2bc can be
obtained. The solid lines in Figs. 8~a! and 8~b! show that
lnln1/k15g ln1/e, with g51.24 and 1.47 fort1 and t2, re-
spectively. From Eq.~3.1! we know thatk1;1/̂ t&. So we
have ^t&;exp(e2g), with g51.24 and 1.47 fort1 and t2,
respectively. The two exponents agree very well with
ones calculated through another approach.

For the second model, initial points are randomly selec
in the interval @0.333,0.4#. Also 100 000 examples of th
lifetime that is less than 10 000 steps of iteration are us
Similar results for the mean lifetime and the lifetime dist
bution to the first model are obtained. The mean lifetim
^t2& varies as^t2&;exp(e2g), with g50.8, while another
characteristic time increases at a power law with the decre
of e: ^t1&;e20.95. From above numerical calculation, on
can see thatt2 increases exponentially with the decrease
e,

^t2&;exp~e2g!, ~3.2!

and the critical exponentg depends on the form of the map
while the dependence of another characteristic timet1 on e
is more variable for different models.

FIG. 6. ~a! lnln^t1& versus ln(1/e) for model~2.1!. The solid line
guiding the eyes is of slope 1.20.~b! lnln^t2& versus ln(1/e) for
model ~2.1!. The solid line guiding the eyes is of slope 1.48. Ea
point in the figures is the average of an ensemble of 100 000
amples. The unit oft is the step of iteration.
e

d

d.

e

se

f

IV. SUMMARY AND DISCUSSION

The mechanism of the present crisis is different from
previously reported cases. For the previously reported ca
the crises are triggered by the collision of the chaotic attr
tor with an unstable attractor or its stable manifold, while t
trigger of the present crisis reported here is the ‘‘tunnel
fect’’ induced by a backward tangent bifurcation. For t
previously reported crises, the orbit colliding with the u
stable attractor or its stable manifold is repelled out of
original attractor by the unstable manifold of the unsta
orbit. Under the repellent force of the unstable manifold,
orbit inevitably goes to other attractors. The movement
the phase point is in one direction, while for the prese
crisis, the orbits escape from the original attractor via
randomly appearing tunnel. For the random variation of
parameter, the orbits escaping from the original attrac
move back and forth randomly. The movement of the ph
points is in two directions. This is the essential difference
the two types of crises. Due to this difference we call the
‘‘collision crises’’ ~the previously reported cases! and ‘‘tun-
nel crises’’ ~the case reported here!, respectively. The
‘‘unstable-unstable bifurcation crisis’’ reported by Grebo
et al. @17# may belong to the later group.

From above numerical calculations, one knows that
characteristic timet2 increases exponentially with the de
crease ofe. The appearance of the super long characteri

x-

FIG. 7. ~a! Probability distributionP(t1) versust1 in model
~2.1! with e50.057, 0.055, 0.053, 0.05, 0.048, and 0.045. T
curves are denoted by 1,2,3,4,5 and 6 respectively.~b! Probability
distribution P(t2) versus t2 in model ~2.1! with e50.057,
0.055,0.053, 0.05, and 0.048. The curves are denoted by 1,2
and 5, respectively. The exponentially decay ofP(t) at larget can
easily be seen in the figures. The decay rate increases with dec
ing e. The unit oft is the step of the iteration.
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55 6603TUNNEL CRISIS AND THE CRISIS-INDUCED . . .
time is due to the distinctive mechanism of the present cri
Since the orbit moves back and forth randomly in the tunn
the time taken to reach the boundary of the uncertain reg
is very long. Also, the lasting appearance of the tunnel w
the phase points escape via it is of very small probabil
This is the second factor that makes the characteristic t
super long. Since the escape of the phase points from

FIG. 8. lnln(1/k1) versus ln(1/e) for k1 from ~a! the fit of the
distribution in Fig. 7~a! to lnP(t1)5k1t11k2 ~the solid line is of
slope 1.24! and ~b! the fit of the distribution in Fig. 7~b! to
lnP(t2)5k1t21k2 ~the solid line is of slope 1.47!.
. A

L.

.

ev
s.
l,
n
n
.
e
he

original attractor is though a narrow tunnel induced by
tangent bifurcation, just like Pomeau’s type-I intermittenc
the intermittency induced by the tunnel crisis has some ch
acteristics similar to that of Pomeau’s type-I intermitten
@18#. The dependence of the critical exponent on metric u
versity may be one of these characteristics. More deta
research must be done on this dependence.

The power-law dependence of^t1& on e in model~2.9! is
only a special case. For this case, the orbits need only
step to go out of the original attractor. The condition for t
escape of phase points is justb.bc . Since the value ofb
distributes homogeneously in@0,bc1e#, the probability for
escape of an orbit from the original attractor
p;e/(bc1e). For a system that is very near the critic
state, i.e.,e!bc , the probabilityp;e/bc . Then, the life-
time, which is just the inverse of the probability, acts
t1;1/p;1/e.

It should be noted that all the models in this paper are
one-dimensional case. One is the chaotically driven OD
the other two are the randomly shifted maps. The comm
features of them are that they all have a driving noise o
finite maximum value and a pair of stable states separate
an unstable state. Under the driving of the random~or cha-
otic! noise, one of the stable states and the unstable s
approach each other. They annihilate finally due to a ba
ward tangential bifurcation. The backward bifurcation is i
duced by the random variation of the control parameter. D
to the annihilation, the boundary of the original attractor d
appears occasionally. Then the orbits are able to esc
through this randomly appearing ‘‘hole.’’ This is just th
tunnel crisis in one-dimensional systems. What will happ
in a high-dimensional system is still an open problem.
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