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Tunnel crisis and the crisis-induced intermittency
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In this paper a different type of crisis in random map is studied. The trigger of this crisis is the tunnel effect
induced by a backward tangent bifurcation, while the previously reported crises are all caused by the collision
of the chaotic attractor with an unstable orbit. In studying the intermittency behaviors induced by the crisis, two
different characteristic times are defined. The scaling laws of the characteristic times are calculated numeri-
cally. Comparing the present crisis with the previously reported cases, the difference between their mecha-
nisms is shown. Corresponding to this difference, two groups of crises are classified.
[S1063-651%97)01106-9

PACS numbes): 05.454+b

[. INTRODUCTION In this paper, some simple models that can exhibit this
crisis are given. Also the intermittency behaviors induced by
A central problem in nonlinear dynamics is that of discov-the new crisis are studied. This paper is organized as follows:
ering how the qualitative dynamical properties of orbitsin Sec. I, some simple models that can exhibit the present
change and evolve as a dynamical system is continuouslgrisis are given. In Sec. lll, two characteristic timesand
changed. The period-doubling bifurcation cascade, intermits, are defined. The scaling laws of the characteristic times
tency, crisis, and basin boundary metamorphoses are sométh respect to the variation of the parameter are also studied
examples of this type of transition in the dynamical behaviorere. Section IV is a short summary and discussion. We
with the variation of a parametgt]. One of them, crisis, has show the difference between the present crisis and the pre-
played a prominent role in the understanding of chaos. Iviously reported crises. Corresponding to the difference in
names the discontinuous change of the chaotic attractor itheir mechanisms, two groups, named “tunnel crisis” and
phase space and is caused by the collision of the chaotitcollision crisis,” are classified. The reasons why the char-
attractor with an unstable attractor or, equivalently, its stablecteristic times of the intermittency behavior are very long
manifold. During the past couple of decades, much work hagare given.
been done on this subjef2-8]. Corresponding to the dis-
continuous change in the chaotic attractor induced by crises, Il. MODELS
Grebogi and co-workers named the crisis the boundary crisis
interior crisis, and merging crisis, respectivdl§]. For a
properly defined characteristic time the mean characteris-
tic time exhibits perfect power-law relation &s)~ e” with
the variation of the control parameter A theoretical ap-
proach to obtain the critical exponeftof the crisis in two-
dimensional dissipative systems was developed by Grebo
et al. [3]. Also, rich behaviors in high-dimensional systems
have been studied by different authd6és-8].
Recently, a different mechanism of crisis in a random

' In this section, three simple examples that can exhibit the
present crisis will be studied. Two of them are randomly
driven maps. The third one is a chaotically driven ordinary
differential equatiofODE). One of our motivations to study
such a randomlyor chaotically driven system is to under-
stand the mechanism of the synchronization of chaotic sys-
Y ms[10]. For the chaotic synchronization, there is always an
ensemble of identical nonlinear systems driven by a chaotic
signal. So the study of a single random driven system is
. oY important to the understanding of the mechanism of chaotic
map has been report¢d]. In this case the crisis is triggered synchronization. This work is also motivated by the attempt

by a backvya(d tangent bifurcation that is induced b_y theto study the domain loss of a multiperiodic system under the
random variation of a parameter. Due to the tangent blfurca]—

; nfluence of random drivind11-14. Some authors even
tion, a narrow funnel appears randomly betwegn the graph cHave noted that the domain loss under the influence of noise
the map and the 45° line. Then the phase points are able sults from a crisislike behavior.

escape via this tunnel from the original region where they
stayed. This mechanism is different from that of the formerly,
reported cases of crises that are caused by the collision of the

chaotic attractor with an unstable orbit. VYn+1=T(f(y,))+z,(modl), (2.1

The first model we study is just a randomly shifted map
th the form
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where 1.0 g
i (9)
f(y)=ay(1-y), (2.2 .
. ] Za
Z,=bx,, (2.3 jg o
andx, (n=1,2,3,...) are aseries of random numbers ho- >

mogeneously distributed in the intervidd, 1], anda, b are 04 ] /
two positive real constants. 1
For a=3.2, b=0, the system has two coexisting fixed 3
pointsyg ;= 0.513 andyg ,=0.8. Hereyy,; is theith root of 0.2 4
the equationf(f(y))+b=y when all its nonzero roots are
arranged in ascending order. Other symbols afith sub- P T A —
scripts of similar meaning are used in this paper. The stabil- 00 02z 04 06 08 10
ity of the state is indexed by the superscripsndu, respec- ym
tively. For identical systems starting from different initial
points, they finally evolve to one of the two states. The basin 1.0 =
boundary of the two states is the unstable fixed point 1 (b)
yo=0.688 of f(f(y))=y. E
If we fix the value ofa and increase the noise strength S
b slowly, the graph of the map at different steps is blurred — ]
into a band bounded by foed
>
Yn+1=T(f(yn)) (2.9 043
and
0.2 9
Yn+1=F(f(yn))+b(modl). (2.9 ] /
The two fixed pointsy} ;,Yp, are blurred into two bands B it A S s
correspondingly. For simplicity, below we will denote the Y

two bands evolved fronyy ; andyy , as the lower and the
upper band, respectively. At this time, an ensemble of iden-

tical systems starting from different initial points still . . ;
P - . b=0.02<b.. The two orbits are bounded respectively in two sepa-
evolves to two distinct groups, although the orbit of a smglerated bands(b) Orbit for the map(2.1) with b—0.043> b, starting

Sy?t%n:hlstalready Oftweak rfi”dom Charagtfr' BUttl;[] Shbou'fj bf{ﬁm the lower band. The orbit bounced back and forth randomly
note at an uncertain region appears between the basins Qi o nsmitted finally to the higher band through the tunnel appear-

the two states. The boundary pointsandyj of the uncer- 1 hetween the graph of the map and the 45° line.
tain region are the unstable fixed points of

FIG. 1. (@ Orbits for the randomly shifted maf2.1) with

Yn+1=f(f(yn))+b(modl) andy,,,=f(f(y,)). For an orbit 5y/3 if 0<y<1/5

starting from the phase point in this region, it is much more

difficult to determine which state it finally evolves to. In Sec. 1/3 if 1/5sy<2/5

IV it will be discussed in detail that the uncertain region f(y)={ 5y/3—1/3 if 2/5<y<3/5 2.7

plays an essential role in the present crisis. With the further

increase ob, the fixed poimyil and the unstable fixed point 213 it 3/5=<y<4l5

yb approach each other. They eventually annihilate due to a Syl3—2/3 if 4/5<y<1,
backward tangential bifurcation &sreaches a critical value
b, (see Fig. 1 After that a narrow tunnel occasionally ap- z,=bx,, (2.9

pears between the graph of the map and the 45° line. Then ) o

the orbits that are originally bounded in the lower band are%n iS & series of random numbers homogeneously distributed
able to escape to a larger region via this tunnel. The twdn the interval[0,1], andb is a positive real constant. The
bands change their sizes suddenly and merge into a singfgotivation to study such a system is to compare it with the
band. This sudden change of band size is another type St model. The two models belong to two different metric
crisis named tunnel Cris[@]_ The two typ|ca| orbits for the universities. We want to know whether the critical exponent
subcritical and the supercritical case are shown in Fig. 2. for the scaling law of the characteristic time is influenced by

The second model is a randomly shifted piecewise lineathe form of the map.
map The system has two fixed points=1/3 andy5=2/3

without the influence of the noise. The two fixed points are
Yn+1=f(Yn) +2z,(modl), (2.6)  Dblurred into two bands with the slow increase of the noise
strengthb. The lower band loses its stability whénis be-
where yond a critical valueb,=x*—-y*. Here y*=1/3 and



6600 H. L. YANG, Z. Q. HUANG, AND E. J. DING 55

0.9 E 1.0 7 7
(a) 1 (o) 4
0.8 ] E
0.8 7 /
07 - ’
c /
> ] _é 0.6 E 4
0.6 7 >N 3
L 4
05 0.4 § /
0.4 - A waw i ERRRRERE N A e am et s 0.2 -
40000 80000 120000 ]
N ]
OO = LU L N L B N B N LALLM A
o0 02 04 06 03 1.0
Yn
1.0 5
G
08 7 (&)
t 0.6 7
>
04 Frorr 40000 ‘ 80000 T20000 0.4 7
M
0.2 1
FIG. 2. y, versusn of model (2.1) for the different values of 3
b: (8 b=0.02;(b) b=0.043. 1
OO 7"""'"U'“"“ll‘"‘""‘\""""‘\"""“/'
_ ) . . 00 02 04 06 08 1.0
x* =2/5 are just the coordinates of the tangent p@ee Fig. ,
3). Via the randomly appeared narrow tunnel between the Yn
graph of the map and the 45° line, orbits originally bounded
in the lower band finally escape. Figure@dand 4b) show FIG. 3. (a) Orbits for the randomly shifted piecewise linear map
the two typical orbits fob of the values below and above the (2.6) with B=0.8<B,. The two orbits are bounded respectively in
critical valueb,, respectively. the two separated bandgb) Orbit for the map (2.6) with
The third model is a system of ODEs B=1.15>B, starting from the lower band. The orbit bounces back
and forth and transmits finally to the higher band through the tunnel
dx, s ) appearing between the graph of the map and the 45° line. Here
H=3x1—x1+ bsin(x,/2), (29 B=18% andB,=15b.=1.0.
dx negative x, can now switch between two sides of the point
_2:)(3, (2.10  X;=0 freely. Typical orbits are shown in Fig. 5.
dt If a Gaussian noise is used to take the place of the source
term sink,/2) in Eq.(2.9), the subsysterm; is just the usu-
dxs = —0.22¢;— SiMX,+ 2.7sirt (2.11) ally used model to study the stochastic switch in the bistable

dt system[15,16]. In this case, the maximum value of the noise
is infinite. So the switch can happen even for a very weak
If one divides the system into two subsystexy and noise strength. One would like to think that the mechanism
(X2,X3), the subsystemxg,x3) evolves chaotically for the of the stochastic switch is also due to the crisis reported here.
given parameters. Since the subsyste,X;) has no de-
pendence on the varialig, the whole system can be viewed
as a chaotically driven one-dimensional ODE. The sub-
system K,,X3) is just the signal source to product a chaotic
noise. Forb=0, i.e., without the influence of the chaotic  For a boundary crisis, the system exhibits a long period of
noise, the subsystemy is bistable. It has two stable states chaotic transience before its escape. For an interior crisis and
x3=* /3. With the increase of the noise magnituglethe a merging crisis, an episodic switching between t¢ao

two fixed points are blurred into two bands distributed sym-more chaotic behaviors of different characters appears when
metrically at the two sides of the poir{=0. The two bands control parameters pass through their critical values. Grebogi
change their size suddenly and merge into a single band a al. named these behaviors crisis-induced intermittency.
b passes through a critical valug=2.0. As a result, the For a properly defined characteristic time, all these cases
orbit that is originally bounded in the region of posititer =~ have good scaling properties. In studying the crisis-induced

Ill. CRISIS-INDUCED INTERMITTENCY AND THE
SCALING LAW OF THE CHARACTERISTIC TIME
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FIG. 4. y, versusn of model (2.6) for the different values of FIG. 5. x; versust of the chaotically driven ODE for values of
B: (a) B=0.08<B, and(b) B=1.15>B;. b: (8 b=1.5 and(b) b=3.8.

intermittency, one of the most important problems is to findfrom this attractor one by one through the randomly appear-
the critical exponeny in the scaling law. Below we will use ing tunnel. If one records the lifetime of each point staying in
the first two models to illustrate the numerical results abouthe original attractor, the probability distribution of the long
the crisis-induced intermittency and the scaling law for thelifetime is
characteristic times.

It has been pointed out in Sec. Il that an uncertain region P(r)~exp —7/{T)). (3.1
will appear between the attracting basins of the two coexist-
ing states under the influence of the stochastic term. For th0 one can get the mean lifetime from the lifetime distribu-
noise strengtt beyond a certain critical value,, a narrow  tion. Another approach to get the mean lifetime is to calcu-
tunnel appears occasionally between the graph of the mdpte it directly. We will use the two approaches to study the
and the 45° line. Leb be slightly greater thab, and con- dependence of the scaling law of and 7, on the variation
sider an initial condition placed in the phase-space regio®f the control parameter.
occupied by the basin of a certain attractor that existed for For the first model, we start from the randomly selected
b<b, (the lower band in the two models studied Hefehe initial points that are in the interv4D.515,0.588 Then the
orbit starting from this initial condition typically moves to- map (2.1) is iterated until the value of,, is greater than a
ward the region of théd<b, attractor, moves in a manner certain values. The duration of this process is the lifetime
reminiscent of an orbit on the<b, attractor, and eventually we studied. If the value of is set to 0.588, the abscissa of
escapes from this region through the narrow tunnel. Fothe tangent point witlh=b.=0.03, the resulting time is the
b>b., one of the coexisting attractors is replaced by a chacharacteristic timer,. If s=0.688, the abscissa of the higher
otic transient. Since there is an uncertain region between thigoundary point of the uncertain region, one gets The
two original attractors, orbits escaping from the phase-spacdependence of the mean lifetimgs ) and(r,) on the varia-
region occupied by the basin of the attractor that existed fotion of control parameter are shown in Figs(a% and
b<b, first enter the uncertain region and remain there for &(b). The solid lines to guide eye are of slope 1.20 and
long time. As a result, two different characteristic times needL.48, respectively. This means that Kw)=1.20In(1k)
to be defined. One characteristic is the time an orbit wanderand Inin7,)=1.48In(1k), or (7,)~exple *?Y and (r,)
in the phase-space region occupied by the attracting basin of expe 49, wheree=b—b,. Figures 7a) and 7b) show
the attractor that existed fdr<b.. The second is the time the probability distributions of the two characteristic times
the orbit spends in the uncertain region before it enters other; and 7,. The figures are constructed by an ensemble of
distant attractors. The two times are denotedrasnd 5, 100 000 examples of the lifetime that is less than 10 000
respectively, throughout this paper. steps of iteration. To show the exponential decafp 6f) for

An ensemble of orbits starting from the phase points scata long lifetime,P(7) is plotted in a log-normal frame. It can
tered homogeneously in the original attractor, they escapbe easily seen that for large InP(7) is a perfectly linear
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1n( 1/5> distribution P(7,) versus 7, in model (2.1) with €=0.057,
0.055,0.053, 0.05, and 0.048. The curves are denoted by 1,2,3,4,
and 5, respectively. The exponentially decayPdf) at larger can

easily be seen in the figures. The decay rate increases with decreas-
ing e. The unit of 7 is the step of the iteration.

FIG. 6. (a) InIn{ry) versus In(1¢) for model(2.1). The solid line
guiding the eyes is of slope 1.2() Inin{r,) versus In(1¢) for
model(2.1). The solid line guiding the eyes is of slope 1.48. Each
point in the figures is the average of an ensemble of 100 000 ex- IV. SUMMARY AND DISCUSSION

amples. The unit of- is the step of iteration.
P P The mechanism of the present crisis is different from the

function of . To fit it to a functiony=k;x+k,, where Previously reported cases. For the previously reported cases,
y=InP(7), x=n, the dependence &; on e=b—b, can be the crises are triggered by the collision of the chaotic attrac-
obtained. The solid lines in Figs(® and 8b) show that to_rwnh an unstable attrac_tor or its stable m_anlfold, while the
Inin1/k,= yInlle, with y=1.24 and 1.47 forr, and 7, re- trigger of the present crisis reported her(_a is thg “tunnel ef-
spectively. From Eq(3.1) we know thatk,~ 14 7). So we fect”_ induced by a bgckward tangent b!fqrcathn. For the
have (7)~exp(e?), with y=1.24 and 1.47 forr, and 7, previously reported_ crises, the OI"bIt cplhdlng with the un-
respectively. The two exponents agree very well with thestab_le attractor or its stable manifold is repelled out of the
ones calculated through another approach. orlg_lnal attractor by the unstable manifold of the I_Jnstable
For the second model, initial points are randomly selecte(?rb!t' _Und_er the repellent force of the unstable manifold, the
in the interval[0.333,0.4. Also 100 000 examples of the orbit mewtably goes to othe( attr_actors. .The movement of
lifetime that is less than 10 000 steps of iteration are used!® Phase point is in one direction, while for the present
Similar results for the mean lifetime and the lifetime distri- €1iSiS; the orbits escape from the original attractor via the
bution to the first model are obtained. The mean lifetime"@ndomly appearing tunnel. For the random variation of the
(r,) varies as(ry)~exple "), with y=0.8, while another parameter, the orbits escaping from the original attractor
characteristic time increases at a power law with the decreadBOV€ back and forth randomly. The movement of the phase
of e (r)~e %% From above numerical calculation, one points is in two d|rgct|ons. This is f[he _essentlal difference of
can see that, increases exponentially with the decrease ofthe tyvp types of crises. Dge to this difference we call them
E “collision crises” (the previously reported cagesnd “tun-
' nel crises” (the case reported hererespectively. The
(m)~expe?), (3.2 “unstable-unstable bifurcation crisis” reported by Grebogi
et al.[17] may belong to the later group.
and the critical exponeng depends on the form of the map,  From above numerical calculations, one knows that the
while the dependence of another characteristic timen e  characteristic timer, increases exponentially with the de-
is more variable for different models. crease ofe. The appearance of the super long characteristic
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] original attractor is though a narrow tunnel induced by a
19 <O) tangent bifurcation, just like Pomeau’s type-I intermittency,
] / the intermittency induced by the tunnel crisis has some char-
=5 ; acteristics similar to that of Pomeau’s type-l intermittency
< / [18]. The dependence of the critical exponent on metric uni-
A versity may be one of these characteristics. More detailed
5 research must be done on this dependence.
£ The power-law dependence ¢f,) on e in model(2.9) is

Wé only a special case. For this case, the orbits need only one
] : step to go out of the original attractor. The condition for the
113 escape of phase points is just-b.. Since the value ob

. > > , o . distributes homogeneously [®,b.+ €], the probability for
In(1/¢) escape of an orbit from the original attractor is
1.6 p~el/(b.+e€). For a system that is very near the critical
<b> e state, i.e.,e<b., the probabilityp~e/b.. Then, the life-
time, which is just the inverse of the probability, acts as
, / 1~ 1lp~1le.
1.2 / It should be noted that all the models in this paper are the
Vs one-dimensional case. One is the chaotically driven ODE,
1.0 / the other two are the randomly shifted maps. The common
] / features of them are that they all have a driving noise of a
0sd finite maximum value and a pair of stable states separated by
/ an unstable state. Under the driving of the rand@amcha-
0.6 I : : S otic) noise, one of the stable states and the unstable state
72 e ! e approach each other. They annihilate finally due to a back-
In(1/¢) ward tangential bifurcation. The backward bifurcation is in-
duced by the random variation of the control parameter. Due
FIG. 8. Inin(1k,) versus In(1¢) for k; from (a) the fit of the g the annihilation, the boundary of the original attractor dis-
distribution in Fig. 7@ to InP(m)=k; 7 tk, (the solid line is of  annears occasionally. Then the orbits are able to escape
slope 1.24 and (b) the_ fit_ of_the distribution in Fig. () to through this randomly appearing “hole.” This is just the
InP(r,)=ki7;+k; (the solid line is of slope 1.47 tunnel crisis in one-dimensional systems. What will happen
é'n a high-dimensional system is still an open problem.

Inln(1/k,)

time is due to the distinctive mechanism of the present crisi
Slnc_e the orbit moves back and forth randomly in the_ tunn_el, ACKNOWLEDGMENTS
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